No.	LD-7752D
DATE	DECEMBER 22.1995

TECHNICAL LITERA URE

FOR
TFT-LCD module

The technical literature is subject to change without notice. So, please contact Sharp or its representative before designing your product based on this literature.

Department General Manager of
Engineering Dept. IV
TFT Development Center
Tenri Liquid Crystal Display Group
Sharp Corporation

1. Application

This technical literature applies to color TFT-LCD module, LQ12DX12.
2. Overview

This module is a color active matrix LCD module incorporating amorphous silicon TFT (Thin_Film_Transistor). It is composed of a color TFT-LCD panel, driver ICS, control circuit, power supply circuit and a backlight unit. Graphics and texts can be displayed on a 1024×768 pixel panel in 262,144 colors by supplying $18(6 \times$ RGB $) \times 2$ bit parallel data signals, four kinds of timing signals and supplying +5 V DC supply voltages for TFT -LCD panel driving.
The TFT-LCD panel used for this model is a low-reflection and higher-color-saturation type. Therefore, this module is suitable for the multimedia use.
Backlight-driving DC/AC inverter is not built in this module.
3. Mechanical Specifications

Parameter	Specifications	Unit
Screen size	31 (Diagonal)	cm
	12.1 (Diagonal)	inch
Effective display area	$245.8(\mathrm{H}) \times 184.3(\mathrm{~V})$	mm
Display pixels	$1024(\mathrm{H}) \times 768(\mathrm{~V})$	pixel
	$(1 \mathrm{pixel}=\mathrm{R}+\mathrm{G}+\mathrm{B}$ dots)	-
Pixel pitch	$0.24(\mathrm{H}) \times 0.24(\mathrm{~V})$	mm
Pixel configuration	R,G,B vertical stripe	-
Display mode	Normally white	-
Outline dimension (TYP) 㸚	$283(\mathrm{~W})$ X215.6(H) X16.5(D)	mm
Weight	1070	g
Surface treatment	Anti-glare and hard-coating (2H)	

: 1 NOTE: excluding backlight cables.
4. Input Terminals and function

4-1-a)TFT-LCD panel driving
CN 1 (Interface signal and +5 V power supply)
Using connecter: IL-FPR-50S-HF(JAE)

| \|PinNo.| | Symbol | Function |
| :---: | :---: | :---: |
| 1 | GND | |
| 2 | R10 | Red data signal of even pixels bito |
| 3 | R1l | Red data signal of even pixels bit 1 |
| 4 | R12 | Red data signal of even pixels bit2 |
| 5 | R13 | Red data signal of even pixels bit3 |
| 6 | R14 | Red data signal of even pixels bit4 |
| 7 | R15 | Red data signal of even pixels bit5 |
| 8 | G10 | Green data signal of even pixels bito |
| 9 | G11 | Green data signal of even pixels bitl |
| 10 | G12 | Green data signal of even pixels bit2 |
| 11 /G13/Green | | n data signal of even pixels bit3 |
| 12 | G14 | Green data signal of even pixels bit4 |
| 13 | G15 | Green data signal of even pixels bit5 |
| 14 | B10 | Blue data signal of even pixels bito |
| 15 | B11 | Blue data signal of even pixels bit1 |
| 16 | B12 | Blue data signal of even pixels bit2 |
| 17 | B13 | Blue data signal of even pixels bit3 |
| 18 | B14 | Blue data signal of even pixels bit4 |
| 19 | B15 | Blue data signal of even pixels bit5 |
| 20 | GND | - |

- continues on the next page -

Pin No.\|'Symbol! Function			
\|21	R00	Red	data signal of odd pixelsbit0
22	R0 1	Red data signal of odd pixels bitl	
23	R02	Red data signal of odd pixels bit2	
24	R03	Red data signal of odd pixels bit3	
25	R04	Red data signal of odd pixels bit4	
26	R05	Red data signal of odd pixels bit5	
27	G00	Green data signal of odd pixels bito	
28	G01	Green data signal of odd pixels bitl	
29	G02	Green data signal of odd pixels bit2	
30	G03	Green data signal of odd pixels bit3	
31	G04	Green data signal of odd pixels bit4	
32	G05	Green data signal of odd pixels bit5	
33	B00	Blue data signal of odd pixels bito	
34	B0 1	Blue data signal of odd pixels bitl	
35	B02	Blue data signal of odd pixels bit2	
36	B03	Blue data signal of odd pixels bit3	
37	B04	Blue data signal of odd pixels bit4	
38	B05	Blue data signal of odd pixels bit5	
39	GND	-	
40	ENABLE	-	
41	Vsync	Vertical sync signal(negative)	
42	Hsync	Horizontal sync signal(negative)	
43	GND	-	
44	CKEV	Clock signal of even pixels	
45	CKOD	Clock signal of odd pixels	
46	GND	-	
47	Vcc	+5V power supply	
48	Vcc	+5 V power supply	
49	Vcc	+5 V power supply	
50	Vcc	+5 V power supply	

4－2）Backlight（twin CCFTs）

CNA Using connector：BHR－03VS－1（JST）
Corresponding connector：SM02（8．0）B－BHS（JST）

Pin No．	Symbol	Function
1	$\mathrm{~V}_{\text {HIGH }}$	Power supplY for lamp（High voltage side）
2,	NC	This is electrically opened．
3	$\mathrm{~V}_{\text {Low }}$	Power supply for lamp（Low voltage side）

＊Cable length： $65 \pm 5 \mathrm{~mm}$

5．Absolute Maximum Ratings

Parameter	Symbol	Condition	Ratings	Unit	Remark
Input voltage	V^{*}	$\mathrm{Ta}=25 \mathrm{C}^{\circ}$	$-0.3 \sim \mathrm{Vcc}+0.3$	V	-
+5 V supply voltage	Vcc	$\mathrm{Ta}=255^{\circ}$	$-0.3-+6$	V	-
Storage temperature	Tstg	-	$-25-+60$	＂ C	［Note］
Operating temperature （Ambient temp．）	Topa	-	$0-+50$	${ }^{\circ} \mathrm{C}$	-

［Note］Relative humidity 95\％RH Max．（at Tas40 ${ }^{\circ}$ ）
Maximum wet－bulb temperature 39% or less．（at Ta＞40 C ）
No condensation．

6．Electrical Characteristics
6－1．Electrical Characteristics

6－1－a）TFT－LCD panel driving $\mathrm{Ta}=25^{\circ} \mathrm{C}$								
Parameter			Symbol	Min．	Typ ．	Max．	Unit	Remark
＋5V	Supply voltage		Vcc	＋4．5	＋5．0	＋5．5	v	【Note1】
	Current dissipation		Icc	－	300	450	mA	【Note2】
Permissive input ripple voltage			V，．，	－	－	100	mV	Vcc
Input threshold voltage		High	$\mathrm{V}_{\text {TH }}$	＋2．4	－	Vcc	v	－
		Low	$\mathrm{V}_{\text {T }}$	GND	－	＋1．0	v	－

【Notel】

Vcc－turn－on conditions
$\mathrm{t} 1 \leqq 10 \mathrm{~ms}$
$0<\mathrm{t} 2 \leqq 10 \mathrm{~ms}$
$0<\mathrm{t} 3 \leqq 1 \mathrm{~s}$

Vcc－dip conditions

1） $2.7 \mathrm{~V} \leqq \mathrm{Vcc}<4.5 \mathrm{~V}$
$\mathrm{t} \mathrm{d} \leqq 10$ ㄸs

2） $\mathrm{Vcc}<2.7 \mathrm{~V}$

Vcc－dip conditions should also follow the Vcc－turn－on conditions．
※CAUTION ：No Horizontal sync and Vertical sync signals u ust damage
LCD panel permanently，

【Note2】

Typical current situation ：$(V c c=+5 \mathrm{~V})$

16－Gray－scale pattern
（Each RGB data：GSi is shown at 6－5．）

6-I-b) Back!ight

The backlight system is an edge lighting type with twin CCFTs.
The characteristics of single lamp are shown in the following table.

Parameter	Symbol	Min.	Typ.	Max.	Unit	Remark
Lamp voltage	V_{L}	-	530	-	Vrms	[Note 1]
Lamp current	IL	2.5	5.5	6.0	marms	-
Lamp power consumption	p ,	-	2.9	-	W	[Note 2]
Frequency	FL	30	40	50	KHz	[Note 3]
Kick-off voltage	V_{5}	-	-	1100	Vrms	$\mathrm{Ta}=25 ¢$ [(Note 4]
		-	-	1400	Vrms	$\mathrm{Ta}=0^{\circ}$
Lamp life time	TL	10000	-	-	hour	[Note 5]

[Note 1】 Lamp current is measured with current meter for high frequency as shown below.

[Note 2] Calculated values for reference. ($\mathrm{I}_{\mathrm{L}} \times \mathrm{V}_{\mathrm{L}}$)
[Note 3] Lamp frequency may produce interference with horizontal sync. frequency, and interference may cause beat on the display. Therefore lamp frequency shall be as different as possibile from that of horizontal sync signal to avoid interference.
[Note 4] The open output voltage of the inverter shall be maintained for more than 1 s ; otherwise the lamp may not be turned on.
[Note 5] Lamp life time is defined that it applied either (1) or (2) under this condition (Continuous turning on at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{L}}=5.5 \mathrm{mArms}$)
(1) Brightness becomes 50% of the original value under standard condition.
(2) Kick-off voltage at $\mathrm{Ta}=0^{\circ} \mathrm{C}$ exceeds maximum value, 1400 Vrms.

Note) The performance of the backlight, for example life time or brightness, is much influenced by the characteristics of DC-AC inverter for the lamp. When you design or order the inverter, please make sure that a poor lighting caused by the mismatch of the backlight and the inverter (misslighting,flicker, etc.) never occured. When you confirm it, the module should be operated in the same condition as it is installed in your equipment.

6－2．Timing Characteristics of input signals

（Vertical）

Item（symbol）	Min．	Typ．	Iax．	Unit	Remark
Vsync cycle（ $\mathrm{TVA}_{\text {A }}$ ）	－	16.666	－	mS	negative
	803	806	－	line	
Blanking period（ T_{s} ）	4	38	－	line	－
Sync pulse width（ $\mathrm{Tvc}^{\text {）}}$	4		－	line	－
Back porch（ $\mathrm{Tvo}^{\text {）}}$	0	29		line	－
$\begin{aligned} & \text { Sync pulse width }+ \text { Back porch } \\ & \left(\mathrm{T}_{\mathrm{vc}}+\mathrm{T}_{v 0}\right) \end{aligned}$	35	35	35	line	－
Active display area（ $\mathrm{Tvz}^{\text {）}}$	768	768	768	line	－
Front porch（ $\mathrm{TVF}^{\text {）}}$	0	3	－	line	－

（Horizontal）

Item（symbol）	Min．	Typ．	Max，	Unit	Remark
Hsync cycle（ $\mathrm{THA}^{\text {）}}$	19.2	20.677	－	HS	negative
	520	672	－	clock	
Blanking period（ H_{Hg} ）	8	160	－	clock	－
Sync pulse width（ $\mathrm{T}_{\text {H }}$ ）	4	68	－	clock	－
Back porch（ $\mathrm{THD}^{\text {）}}$	0	80	－	clock	－
Active display area（ THE ）	512	512	512	clock	－
Front porch（ T_{HF} ）	4	12	－	clock	－

（Clock）

Item	Min．	Typ．	Max．	Unit	Remark
Frequncy	25.0	32.5	35.0	$\mathbf{Y H z}$	【Note1】

【Note1】 Two pixel－data are sampled at a time．
（Hsync－Vsync Phase difference）
Vsync

Item	Min．	Typ．	Max．	Unit	Remark
Hsync $\left(\mathrm{T}_{\mathrm{HV}}\right)$	1	-	$\mathrm{T}_{\mathrm{HA}}-\mathrm{T}_{\mathrm{HC}}$	clock	-

（Hsync－ENAB Phase difference）

ENAB

Item	Min．	Typ．	Max．	Unit	Remark
Hsync－ENAB Phase difference $\left(\mathrm{T}_{\mathrm{HN}}\right)$	0	-	186	clock	-

6－3．Display position

Item	Standards	Beginning	Ending	Unit	Remark
Horizontal	rising edge of ENAB	0	512	clock	-
	falling edge of Hsync	148	660	clock	【Note1】
Vertical	falling edge of Vsynd 35	803	line	-	

【Note1】 ENAB signal must be fixed to low．
Note）
（Horizontal display direction）
When ENAB is fixed to low， 148 clocks are counted from Hsync falling edge and data from after are available．If you need other timing，please use ENAB signal．
（Vertical display directio）
35 lines are counted from Vsync falling edge and data from next line are available．
（Note of ENAB signal）
Do NOT use ENAB for positioning of the vertical display direction．
ENAB signs same as the display period must be input for the vertical blanking period．
Caution：
Image wi 1 not be displayed on the right position othewise．
6－4．Input Signals and display position

6-6.Timing characteristics of input signals

Parameter	Symbol	Min.	Typ.	Max.	Unit
Clock period	Tck	26	30	40	ns
Clock high time	Tckh	9	-	-	ns
Clock low time	Tckl	12	-	-	ns
Data setup time	Tds	8	-	-	ns
Data hold time	Tdh	5	-	-	ns
CKEV to CKOD time	Tckeo	6	-	-	ns
CKOD to CKEV time	Tckoe	6	-	-	ns

6-5. Input Signals, Basic Display Colors and Gray Scale of Each Color

0: Low level voltage 1 : High level voltage

Each color is displayed in 64 gray scales from 6 bit data signal input.
According to the combination of total 18 bit data, 262,144 colors are displayed.

7．Optical Characteristics
$\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=+5 \mathrm{~V}$

Parameter		Symbol	Condition	Min．	Typ．	Max．	Unit	Remark
Viewing angle range	Horizontal	O21．22	CR＞ 10	35	－	－	Deg．	【Note1】
	Vertical	$\theta 11$		10	－	－	Deg．	
		e 12		30	－	－	Deg．	
Contrast ratio		C R	$\theta=0^{\circ}$	100	－	－		【Note2】
Response time	Rise	$\tau \mathrm{r}$		－	30	－	ms	【Note3】
	Fall	$\tau \mathrm{f}$			50	－	ms	
Luminance of white		Y_{L}		105	150	－	$\mathrm{cd} / \mathrm{m}^{2}$	－
Chromaticity of white		X		－	0.29 C	－	－	－
		Y		－	0.320	－	－	－
White uniformity		δ w		－	－	1.25	－	【Note4】

※ The measurement shall be executed after brightness of the backlight has reached its saturation point．（ $\mathrm{I}_{\mathrm{L}}=5.5 \mathrm{mArms}$ ）
The optical characteristics are measured in a darkroom or equivalent state with the method shown in Fig．3．And these characteristics except for White uniformity are measured at the center of the screen．

Center of the screen
Fig． 3 Optical characteristics measurement method
［Note 1］Definitions of viewing ang le：

【Note2】 Definitions of Contrast Ratio：
The contrast ratio is defined as follows．
Contrast Ratio $=\frac{\text { Luminance（brightness）}}{\text { Luminance bith all pixels white }}$

【Note3】 Definitions of Response Time：
The response time shall be measured as the following figure by switching the input signals for＂black＂ON and OFF．

【Note4】 Definition of White uniformity:

8. Display quality
pixel $256 \quad 512 \quad 768$
The display quality of this module shall be in compliance with the Delivery Inspection Standard.
9. Handling Precautions

9-1) Be sure to insert the cable into the connector or take out of the connector after turning off the power supply on the set side.
9-2) Others
a) When installing the module, be sure to fix the module on the same plane, taking care not in order to warp or twist the module.
b) Since the polarizer is easily damaged, pay attention not in order to scratch it.
c) Wipe off water drop immediate.ly. Long contact with water may cause discoloration or spots.
d) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
e) Since the glass is used in the module, it may break or crack if dropped or bumped on hard surface. Handle with care.
f) To protect the liquid crystal from ultraviolet rays, don't leave it in direct sunlight or strong ultraviolet rays for long.
g) Since CMOS LSI is used in this module, take care of static electricity and ground your body when handling.
h) Observe all other precautionary requirements in handling components.
10. Packing form
a) Piling-up number of cartons : MAX. 6 cartons
b) Package quantity in one carton: MAX. 10 cartons
c) Carton size: $380 \mathrm{~mm}(\mathrm{~W}) \times 384 \mathrm{~mm}(\mathrm{H}) \times 315 \mathrm{~mm}(\mathrm{D})$
d) Total mass of 1 carton filled with full modules : 13 kg
11. Reliability test items

No	Test item	Conditions
1	High temperature storage test	Ta=60\% 240 h
$\frac{2}{2}$	Low temperature storage test	Ta=-25 ${ }^{\circ} \mathrm{C}$ 240h
3	High temperature \& high humidity operation test	$\begin{aligned} & \mathrm{Ta}=40 \mathrm{C}: 95 \% \mathrm{RH} \quad 240 \mathrm{~h} \\ & \text { (No condensation) } \end{aligned}$
4	High temperature operation tes	$\begin{array}{ll} \hline \mathrm{Ta}=50^{\circ} \mathrm{C} & 240 \mathrm{~h} \\ \text { (The panel temp must be less than } 60 \% \text {) } \end{array}$
5	Low temperature operation test	Ta=0' ${ }^{\circ}$ 240h
6	Vibration test (non-operating)	```Frequency: 10~57Hz Vibration width(one side) :0.075mm Frequency:58~500Hz Gravity:9.8m/s }\mp@subsup{}{}{2 Sweep time: }11\textrm{min} Test period: 3h (1 hour for each direction of X,Y,Z)```
7	$\begin{aligned} & \text { Shock test } \\ & \text { (non-operating) } \end{aligned}$	```Max. gravity: 490m/s}\mp@subsup{}{}{2 Pulse width: l1ms, sine wave Direction: }\pmX,\pmY,\pm once for each direction.```

[Result Evaluation Criteria]
Under the display quality test conditions with normal operation state, these shall be no change which may affect practical display function.
12. Others

1) Indication of Lot No. Label

This product indicate manufacture name"SHARP",ModelNo."LQ12DX12", "Product No." and "MADE IN JAPAN" on the module. (back side)

Product month (1~9, X. Y, Z)
2) Adjusting volumes have been set optimally before shipment, so do not change any adjusted values. If adjusted values are changed, the data mentioned in this technical literature may not be satisfied.
3) Disassembling the module can cause permanent damage and should be strictly avoided.
4) Please be careful since image retention may occur when a fixed pattern is displayed for a long time.
5) If any problem occurs in relation to the description of this specification,it shall be resolved through discussion with spirit of cooperation.
LD-7752D-6

LQ12DX 2 MODULE OUTLINE dimensions S DE)

